

**Marking Scheme**  
**Strictly Confidential**  
**(For Internal and Restricted use only)**  
**Secondary School Examination, 2025**  
**SUBJECT NAME MATHEMATICS (BASIC) (Q.P. CODE 430/3/2)**

**General Instructions: -**

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b>  | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.                                                                                                                                                                                                                                                                         |
| <b>2</b>  | <b>“Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, evaluation done and several other aspects. It’s leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc. may invite action under various rules of the Board and IPC.”</b>                                                                                                                                                                                             |
| <b>3</b>  | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one’s own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. <b>However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.</b> |
| <b>4</b>  | The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>5</b>  | The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.                                                                                                                                                                                                                   |
| <b>6</b>  | Evaluators will mark ( ✓ ) wherever answer is correct. For wrong answer CROSS ‘X’ be marked. Evaluators will not put right ( ✓ ) while evaluating which gives an impression that answer is correct and no marks are awarded. <b>This is most common mistake which evaluators are committing.</b>                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>7</b>  | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>8</b>  | If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>9</b>  | If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note <b>“Extra Question”</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>10</b> | No marks to be deducted for the cumulative effect of an error. It should be penalized only once.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>11</b> | A full scale of marks _____ (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>12</b> | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.                                                                                                                                                                                                                                                                                                                                                         |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | <p>Ensure that you do not make the following common types of errors committed by the Examiner in the past:-</p> <ul style="list-style-type: none"> <li>Leaving answer or part thereof unassessed in an answer book.</li> <li>Giving more marks for an answer than assigned to it.</li> <li>Wrong totaling of marks awarded on an answer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          |
|    | <ul style="list-style-type: none"> <li>Wrong transfer of marks from the inside pages of the answer book to the title page.</li> <li>Wrong question wise totaling on the title page.</li> <li>Wrong totaling of marks of the two columns on the title page.</li> <li>Wrong grand total.</li> <li>Marks in words and figures not tallying/not same.</li> <li>Wrong transfer of marks from the answer book to online award list.</li> <li>Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)</li> <li>Half or a part of answer marked correct and the rest as wrong, but no marks awarded.</li> </ul> |
| 14 | <p>While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0) Marks.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15 | <p>Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.</p>                                                                                                                                                                                                                                                                                                                                                                 |
| 16 | <p>The Examiners should acquaint themselves with the guidelines given in the "<b>Guidelines for spot Evaluation</b>" before starting the actual evaluation.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17 | <p>Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18 | <p>The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the <b>Marking Scheme</b>.</p>                                                                                                                                                                                                                                                                                                                                                                                    |

# Set 430/3/2

## MARKING SCHEME MATHEMATICS (BASIC)

### SECTION A

This section has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

$20 \times 1 = 20$

1. The distance of point  $(-3, 4)$  from y-axis is :

(A)  $-3$  (B)  $3$

(C)  $4$  (D)  $5$

Ans: (B)  $3$

1

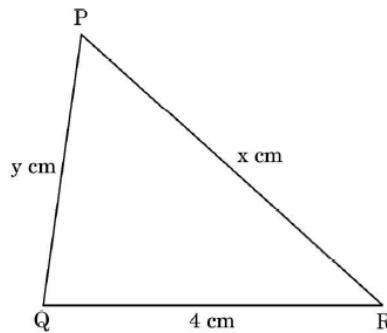
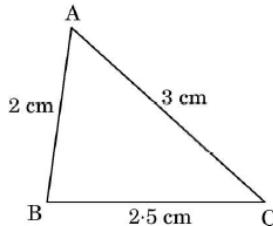
2. The value of  $\frac{\cot^2 A - \operatorname{cosec}^2 A}{\sin 30^\circ + \cos 60^\circ}$  is :

(A)  $1$  (B)  $-1$

(C)  $\frac{2}{1 + \sqrt{3}}$  (D)  $\frac{-2}{1 + \sqrt{3}}$

Ans: (B)  $-1$

1

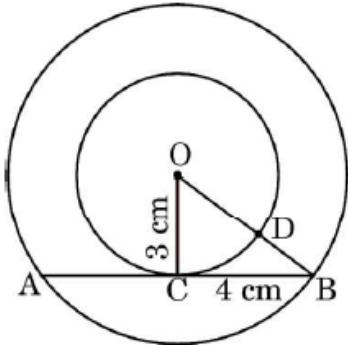


3. Which types of triangles are always similar ?

(A) Right-angled triangles  
(B) Acute-angled triangles  
(C) Isosceles triangles  
(D) Equilateral triangles

Ans: (D) Equilateral triangles

1

4. What values of  $x$  and  $y$  will make  $\triangle ABC$  similar to  $\triangle QRP$  in the figures given below ?

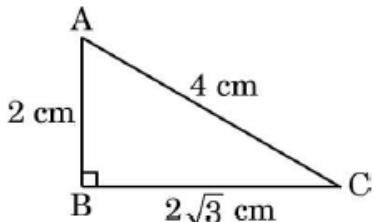



(A)  $x = 6, y = 5$   
 (B)  $x = 5, y = 6$   
 (C)  $x = 6, y = 6$   
 (D)  $x = 12, y = 3.2$

**Ans:** (B)  $x = 5, y = 6$

1

5. In the given figure, chord AB of the larger circle touches the smaller circle at C. If both the circles have the same centre O, then the length of BD is :




(A) 1 cm (B) 2 cm  
(C) 3 cm (D) 4 cm

**Ans: (B)** 2 cm

1

6. In the given figure, the angle of elevation of point A from point C is :



(A)  $30^\circ$       (B)  $45^\circ$   
(C)  $60^\circ$       (D) Cannot be determined

Ans: (A)  $30^\circ$

1

7. The angle of the sector of a circle whose area is one-eighth of the area of the circle is :

(A)  $22\frac{1}{2}^\circ$  (B)  $45^\circ$   
 (C)  $60^\circ$  (D)  $90^\circ$

**Ans: (B) 45°**

---

1

8. The perimeter of a quadrant of a circle of circumference 22 cm is :

- (A) 29 cm
- (B) 22 cm
- (C) 12.5 cm
- (D) 5.5 cm

Ans: (C) 12.5 cm

1

9. A cone and cylinder have same height and same radius. The volume of the cone and the volume of the cylinder are in the ratio :

- (A) 1 : 1
- (B) 1 : 3
- (C) 3 : 1
- (D) 1 : 2

Ans: (B) 1 : 3

1

10. The following table shows the marks scored by 23 students of a class.

| Marks              | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
|--------------------|--------|---------|---------|---------|---------|
| Number of Students | 5      | 3       | 4       | 8       | 3       |

The lower limit of the modal class is :

- (A) 10
- (B) 20
- (C) 30
- (D) 40

Ans: (C) 30

1

11. For a distribution, if mean = 15 and mode = 12, then its median is :

- (A) 12
- (B) 13
- (C) 14
- (D) 15

Ans: (C) 14

1

12. A pair of dice is thrown simultaneously. Let E denote the event that "The sum of numbers obtained on both dice is at least 9." The number of outcomes in favour of event E is :

- (A) 4
- (B) 6
- (C) 10
- (D) 26

Ans: (C) 10

1

13. If  $p = 2^3 \times 3^2 \times 5$  and  $q = 2^2 \times 3^3$ , then the LCM of p and q is :

- (A)  $2^3 \times 3^3$
- (B)  $2^2 \times 3^2$
- (C)  $2^2 \times 3^2 \times 5$
- (D)  $2^3 \times 3^3 \times 5$

Ans: (D)  $2^3 \times 3^3 \times 5$  1

14.  $3^n$ , where n is a natural number, cannot end with the digit :

- (A) 3
- (B) 5
- (C) 7
- (D) 9

Ans: (B) 5 1

15. A prime number has :

- (A) exactly two prime factors
- (B) exactly one prime factor
- (C) at least one prime factor
- (D) at least two prime factors

Ans: (B) exactly one prime factor 1

16. For what value(s) of k, is the system of equations  $kx + 2y = 3$  and  $2x + y = 5$  inconsistent ?

- (A)  $k = \text{Any real number}$
- (B)  $k \neq 2$
- (C)  $k \neq 4$
- (D)  $k = 4$

Ans: (D)  $k = 4$  1

17. If  $(\sqrt{x} + 1)^2 = x^2 + 2\sqrt{x}$  is expressed as a quadratic equation in the form of  $ax^2 + bx + c = 0$ , then the value of  $a - b + c$  is :

- (A) -1
- (B) 0
- (C) 1
- (D) 2

Ans: (C) 1 1

18. If point  $(1, 2)$  divides the line segment joining the points  $(3, 5)$  and  $(2p, q)$  in the ratio  $1 : 1$ , then  $(p, q)$  is equal to :

(A)  $\left(-\frac{1}{2}, -1\right)$

(B)  $\left(-\frac{1}{2}, -\frac{1}{2}\right)$

(C)  $(-1, -1)$

(D)  $\left(-1, -\frac{1}{2}\right)$

**Ans:** (A)  $\left(-\frac{1}{2}, -1\right)$

1

Questions number **19** and **20** are Assertion and Reason based questions. Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is **not** the correct explanation of Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.

**19.** Assertion (A) : Every quadratic equation has two real roots.

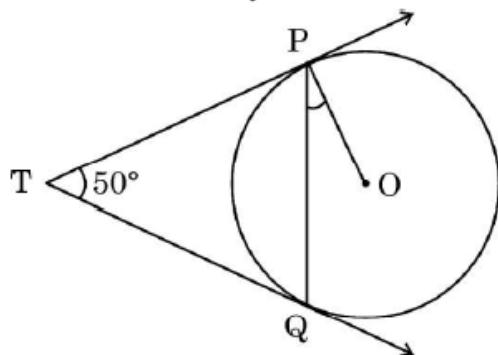
Reason (R) : A quadratic polynomial can have at most two zeroes.

**Ans:** (D) Assertion (A) is false, but Reason (R) is True.

1

**20.** Assertion (A) : For an acute angle  $\theta$ ,  $\cot \theta = 1 \Rightarrow \operatorname{cosec} \theta = 2$ .

Reason (R) :  $\operatorname{cosec}^2 \theta - \cot^2 \theta = 1$ .


**Ans:** (D) Assertion (A) is false, but Reason (R) is True.

1

## SECTION B

This section has **5** Very Short Answer (VSA) type questions carrying **2** marks each.  
 $5 \times 2 = 10$

21. In the given figure, TP and TQ are two tangents. If  $\angle PTQ = 50^\circ$ , then find the measure of  $\angle OPQ$ .



**Solution:**  $TP = TQ$  (Tangents drawn from an exterior point to a circle are equal)

Since angles opposite to equal sides of a triangle are equal

$$\therefore \angle TPQ = \angle TQP$$

$$\text{In } \triangle TPQ, 50^\circ + 2 \angle TPQ = 180^\circ$$

$$\Rightarrow \angle TPQ = 65^\circ$$

$$\angle OPQ = 90^\circ - 65^\circ = 25^\circ$$

$\frac{1}{2}$

1

$\frac{1}{2}$

22. (a) If  $\sin 3A = 1$ , then find the value of  $\cos 2A - \tan^2 45^\circ$ .

**OR**

(b) If  $(\sec A + \tan A)(1 - \sin A) = k \cos A$ , then find the value of k.

**Solution:** (a)  $3A = 90^\circ \Rightarrow A = 30^\circ$

$$\cos 2A - \tan^2 45^\circ = \cos 60^\circ - \tan^2 45^\circ$$

$$= \frac{1}{2} - 1 = \frac{-1}{2}$$

$\frac{1}{2}$

$1\frac{1}{2}$

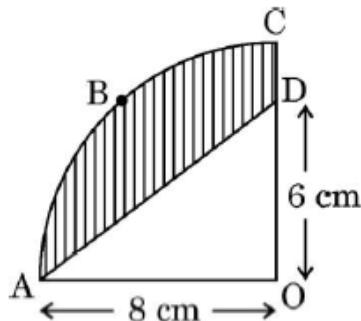
**OR**

$$(b) \left( \frac{1}{\cos A} + \frac{\sin A}{\cos A} \right) (1 - \sin A) = k \cos A$$

$$1 - \sin^2 A = k \cos^2 A$$

$$\cos^2 A = k \cos^2 A$$

$\frac{1}{2}$


$\frac{1}{2}$

$\frac{1}{2}$

$$k = 1$$

$\frac{1}{2}$

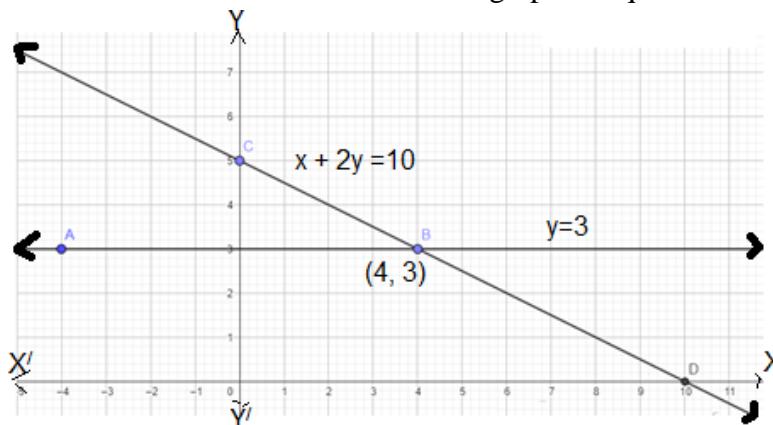
23. In the given figure, OABC is a quadrant of a circle with centre O and radius 8 cm. If OD = 6 cm, then find then perimeter of the shaded region.



**Solution:**

$$\begin{aligned}
 \text{Perimeter of the shaded region} &= \text{length of Arc ABC} + AD + CD \\
 &= \frac{90}{360} \times 2 \times \frac{22}{7} \times 8 + \sqrt{6^2 + 8^2} + (8 - 6) \\
 &= \frac{172}{7} \text{ cm} \quad \text{or} \quad 24.57 \text{ cm}
 \end{aligned}$$

1½


½

24. Solve the following system of equations graphically :

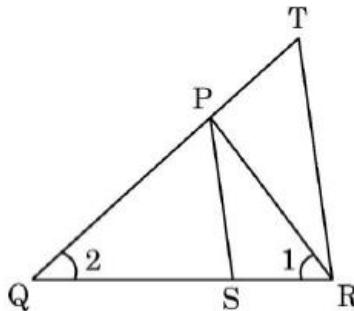
$$x + 2y = 10 \text{ and } y = 3$$

**Solution:**

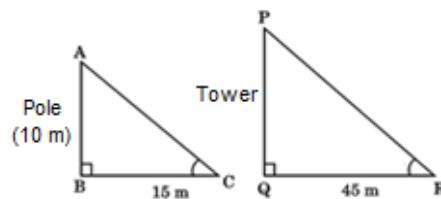
Correct graph of equations



Solution:  $x = 4, y = 3$  or  $(4, 3)$


1½

½


25. (a) A vertical pole of height 10 m casts a shadow of 15 m on the ground and at the same time, a tower casts a shadow of 45 m on the ground. Find the height of the tower.

**OR**

(b) In the given figure,  $\frac{QR}{QS} = \frac{QT}{PR}$  and  $\angle 1 = \angle 2$ . Prove that  $\Delta PQS \sim \Delta TQR$ .



**Solution:** (a)



$$\therefore \Delta ABC \sim \Delta PQR$$

$$\therefore \frac{10}{PQ} = \frac{15}{45} \Rightarrow PQ = 30$$

Height of the tower = 30 m

**OR**

(b) In  $\Delta PQR$   $\angle 1 = \angle 2 \Rightarrow PQ = PR$

$\therefore$  In  $\Delta PQS$  and  $\Delta TQR$

$$\frac{QR}{QS} = \frac{QT}{PR} \Rightarrow \frac{QR}{QS} = \frac{QT}{QP}$$

also  $\angle Q = \angle Q$  (Common)

$\therefore \Delta PQS \sim \Delta TQR$  (by SAS similarity criterion)

1/2

1 1/2

1/2

1/2

1/2

1/2

**SECTION C**

*This section has 6 Short Answer (SA) type questions carrying 3 marks each.  $6 \times 3 = 18$*

**26.** (a) A fraction becomes  $\frac{1}{3}$ , when 1 is subtracted from the numerator and it becomes  $\frac{1}{4}$ , when 8 is added to its denominator. Find the fraction.

**OR**

(b) Find the value of  $k$  for which the following pair of linear equations will have infinitely many solutions :

$$kx + 3y - (k - 3) = 0 \text{ and } 12x + ky - k = 0$$

Hence, find any two solutions of the given pair of equations.

**Solution:** (a) Let the fraction be  $\frac{x}{y}$

$$\frac{x-1}{y} = \frac{1}{3} \Rightarrow 3x - y = 3 \dots \dots \dots \text{(i)}$$

$$\frac{x}{y+8} = \frac{1}{4} \Rightarrow 4x - y = 8 \dots \dots \dots \text{(ii)}$$

On solving the equations (i) and (ii), we get  $x = 5, y = 12$

Required fraction is  $\frac{5}{12}$

**OR**

(b) For infinitely many solutions:  $\frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$

$$k^2 = 36 \text{ and } k^2 - 3k = 3k$$

$$(k = \pm 6) \text{ and } (k = 6, 0)$$

$$\therefore k = 6$$

For  $k = 6$ , equations are  $6x + 3y = 3$  and  $12x + 6y = 6$   
any two correct solutions

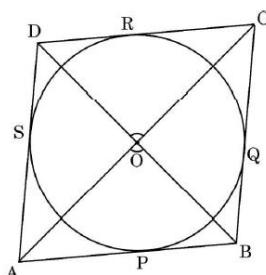
**27.** Prove the following trigonometric identity :

$$\frac{1 + \sec A}{\sec A} = \frac{\sin^2 A}{1 - \cos A}$$

$$\text{Solution: LHS} = \frac{1 + \frac{1}{\cos A}}{\frac{1}{\cos A}}$$

$$= 1 + \cos A$$

$$= \frac{(1 + \cos A)(1 - \cos A)}{(1 - \cos A)}$$


$$= \frac{1 - \cos^2 A}{1 - \cos A} = \frac{\sin^2 A}{1 - \cos A} = \text{RHS}$$

28. A box contains 6 blue, 4 white and 8 red marbles. A marble is drawn at random from this box. Find the probability that the marble so drawn is :

- (i) white
- (ii) white or red
- (iii) not red

|                                                                               |   |
|-------------------------------------------------------------------------------|---|
| <b>Solution:</b> (i) $P(\text{white marble}) = \frac{4}{18}$ or $\frac{2}{9}$ | 1 |
| (ii) $P(\text{white or red marble}) = \frac{12}{18}$ or $\frac{2}{3}$         | 1 |
| (iii) $P(\text{not a red marble}) = \frac{10}{18}$ or $\frac{5}{9}$           | 1 |

29. In the given figure, a circle is inscribed in a quadrilateral ABCD which touches the sides AB, BC, CD and DA at P, Q, R and S respectively. Prove that  $\angle AOB + \angle COD = 180^\circ$ .



|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| <b>Solution:</b> | Proving $\triangle OAP \cong \triangle OAS$ (by any congruency criterion)<br>$\Rightarrow \angle 1 = \angle 6$ (cpct)<br>Similarly $\angle 3 = \angle 5$ , $\angle 4 = \angle 7$ and $\angle 2 = \angle 8$<br>Also $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^\circ$<br>$\therefore \angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^\circ$<br>$\angle AOB + \angle COD = 180^\circ$ | 1<br>1<br>$\frac{1}{2}$<br>$\frac{1}{2}$ |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|

30. (a) Prove that  $\sqrt{2}$  is an irrational number.

**OR**

(b) Find which among the following numbers a, b and c is/are composite numbers.

$$a = 7 \times 11 \times 13 + 13$$

$$b = 6 \times 5 \times 4 + 4$$

$$c = 7 \times 13 + 6$$

**Solution:** (a) Let  $\sqrt{2}$  be a rational number such that  $\sqrt{2} = \frac{p}{q}$

(p and q are co-prime numbers,  $q \neq 0$ )

$$\sqrt{2}q = p \Rightarrow 2q^2 = p^2$$

2 divides  $p^2 \Rightarrow$  2 divides p as well

$p = 2m$  (for some integer m)

$$2q^2 = 4m^2 \Rightarrow q^2 = 2m^2$$

2 divides  $q^2 \Rightarrow$  2 divides q as well

p and q have a common factor 2 which is a contradiction as p and q are co-prime.

$\therefore$  our assumption is wrong

Hence,  $\sqrt{2}$  is an irrational number

OR

(b) a and b are **only** composite numbers.

1/2

1

1

1/2

3

31. Find the zeroes of the polynomial  $4x^2 + 4x + 1$  and verify the relationship between the zeroes and the coefficients of the given polynomial.

**Solution:**

$$4x^2 + 4x + 1$$

$$(2x + 1)(2x + 1)$$

Zeroes are  $-\frac{1}{2}$  and  $-\frac{1}{2}$

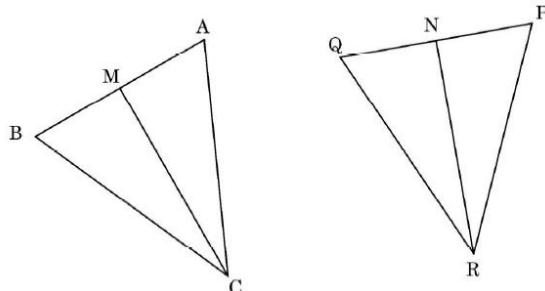
$$\text{Sum of zeroes} = \frac{-1}{2} + \frac{-1}{2} = -1 = \frac{-4}{4} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$\text{Product of zeroes} = \frac{-1}{2} \times \frac{-1}{2} = \frac{1}{4} = \frac{\text{constant term}}{\text{Coefficient of } x^2}$$

1

1

1


## SECTION D

*This section has 4 Long Answer (LA) type questions carrying 5 marks each.  $4 \times 5 = 20$*

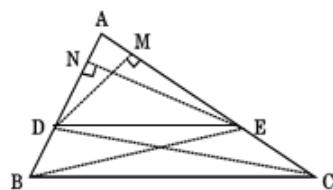
32. (a) State and Prove "Basic Proportionality Theorem".

OR

(b) In the given figure, CM and RN are respectively, the medians of  $\triangle ABC$  and  $\triangle PQR$ . If  $\triangle ABC \sim \triangle PQR$ , prove that :



- (i)  $\Delta \text{AMC} \sim \Delta \text{PNR}$
- (ii)  $\angle \text{BCM} = \angle \text{QRN}$
- (iii)  $\Delta \text{BMC} \sim \Delta \text{QNR}$


**Solution:** (a) Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Correct  
Statement:  
1 mark

Given: In  $\triangle ABC$ ,  $DE \parallel BC$

To Prove:  $\frac{AD}{DB} = \frac{AE}{EC}$

Construction: Draw  $DM \perp AC$ ,  $EN \perp AB$ , join  $BE$  and  $CD$ .



Given + To prove +  
Construction +  
Figure:  
1 mark

as  $\Delta DBE$  and  $\Delta DCE$  lie on the same base  $DE$  and between same parallels  $BC$  and  $DE$

$$\therefore \text{ar}(\Delta DBE) = \text{ar}(\Delta ECD) \text{ or } \frac{\text{ar}(\Delta ADE)}{\text{ar}(\Delta DBE)} = \frac{\text{ar}(\Delta ADE)}{\text{ar}(\Delta ECD)} \dots \dots \dots \text{(iii)}$$

From (i), (ii) and (iii), we get  $\frac{AD}{DB} = \frac{AE}{EC}$

**OR**

(b) (i)  $\Delta ABC \sim \Delta PQR \Rightarrow \frac{AB}{PQ} = \frac{AC}{PR}$

1/2

$$\Rightarrow \frac{AC}{PR} = \frac{\frac{1}{2}AB}{\frac{1}{2}PQ} \Rightarrow \frac{AC}{PR} = \frac{AM}{PN}$$

1/2

Also  $\angle A = \angle P$

1/2

$\therefore \Delta AMC \sim \Delta PNR$  (by SAS similarity criterion)

1/2

(ii)  $\Delta AMC \sim \Delta PNR$  (from part (i))

1/2

$\therefore \angle ACM = \angle PRN$

Also  $\angle ACB = \angle PRQ$  ( as  $\Delta ABC \sim \Delta PQR$ )

1/2

$$\therefore \angle ACB - \angle ACM = \angle PRQ - \angle PRN$$

1/2

$$\Rightarrow \angle BCM = \angle QRN$$

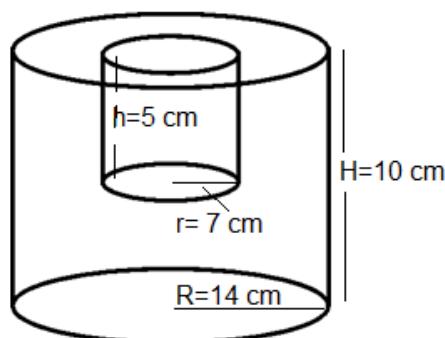
(iii)  $\Delta ABC \sim \Delta PQR \Rightarrow \frac{AB}{PQ} = \frac{BC}{QR}$

1/2

$$\Rightarrow \frac{BC}{QR} = \frac{\frac{1}{2}AB}{\frac{1}{2}PQ} \Rightarrow \frac{BC}{QR} = \frac{BM}{QN}$$

1/2

Also  $\angle B = \angle Q$


1/2

$\therefore \Delta BMC \sim \Delta QNR$  (by SAS similarity criterion)

1/2

33. From a solid wooden cylinder of height 10 cm and radius 14 cm, a cylinder of radius 7 cm and height 5 cm is scooped out to form a cavity inside the solid cylinder. Find the total surface area of the remaining solid.

**Solution:**



Total surface area of the remaining solid  
 $= \text{CSA of outer cylinder} + \text{CSA of inner cylinder} + \text{area of bases}$   
 $+ \text{Area of ring}$   
 $= 2\pi RH + 2\pi rh + (\pi R^2 + \pi r^2) + (\pi R^2 - \pi r^2)$   
 $= 2\pi RH + 2\pi rh + 2\pi R^2$   
 $= 2 \times \frac{22}{7} \times 14 \times 10 + 2 \times \frac{22}{7} \times 7 \times 5 + 2 \times \frac{22}{7} \times 14 \times 14$   
 $= 880 + 220 + 1232$   
 $= 2332 \text{ sq. cm}$

1½ + 1½ + 1½

½

34. The following distribution shows the weekly pocket allowance (in ₹) of some children of a locality. The mean pocket allowance is ₹ 180.

| Weekly Pocket Allowance (in ₹) | Number of Children |
|--------------------------------|--------------------|
| 110 – 130                      | 7                  |
| 130 – 150                      | 6                  |
| 150 – 170                      | 9                  |
| 170 – 190                      | 13                 |
| 190 – 210                      | f                  |
| 210 – 230                      | 5                  |
| 230 – 250                      | 4                  |

Find the value of f. Hence find the mode of given data.

**Solution:**

| C. I,     | $x_i$ | $f_i$ | $f_i x_i$    |
|-----------|-------|-------|--------------|
| 110 – 130 | 120   | 7     | 840          |
| 130 – 150 | 140   | 6     | 840          |
| 150 – 170 | 160   | 9     | 1440         |
| 170 – 190 | 180   | 13    | 2340         |
| 190 – 210 | 200   | f     | 200 f        |
| 210 – 230 | 220   | 5     | 1100         |
| 230 – 250 | 240   | 4     | 960          |
|           |       | 44+f  | 7520 + 200 f |

Correct Table:  
1½ marks

$$\text{Mean} = \frac{\sum_{i=1}^n x_i f_i}{\sum_{i=1}^n f_i}$$

|                                                          |                |
|----------------------------------------------------------|----------------|
| $180 = \frac{7520 + 200f}{44 + f}$                       | 1              |
| $f = 20$                                                 | $\frac{1}{2}$  |
| $\text{Mode} = 190 + \frac{20-13}{20(2)-13-5} \times 20$ | $1\frac{1}{2}$ |
| $= 196.36$                                               | $\frac{1}{2}$  |

35. (a) Find two consecutive odd integers, sum of whose squares is 290.

OR

(b) A charity trust decides to build a rectangular hall having an area of  $300 \text{ m}^2$ . The length of the hall is one metre more than twice its width. Find the length and breadth of the hall.

**Solution:** (a) Let the two consecutive odd integers be  $x$  and  $x + 2$ .

$$x^2 + (x+2)^2 = 2$$

$$2x^2 + 4x - 286 \equiv 0 \text{ or } x^2 + 2x - 143 \equiv 0$$

$$(x - 11)(x + 13) = 0$$

x = 11

Required odd integers are 11 and 13

OR

(b) Let width be  $x$  m and length be  $(2x + 1)$  m

$$\text{A.T.Q. } (2x + 1)x = 300$$

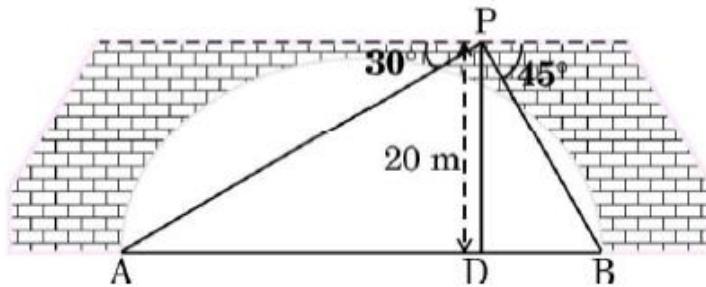
$$2x^2 + x - 300 = 0$$

$$(x - 12)(2x + 25) = 0$$

$$x = 12$$

(Rejecting  $x = \frac{-25}{2}$  )

length = 25 m and width = 12 m


## SECTION E

*This section has 3 case study based questions carrying 4 marks each.*

$$3 \times 4 = 12$$

## Case Study - 1

36. Two motorboats A and B are waiting at the opposite banks of a river in order to reach the opposite side. From a point P on the bridge, 20 m above the river, the angles of depression of the boats are  $30^\circ$  and  $45^\circ$  respectively, as shown in the figure given below. Both the boats leave at the same time at the speed of 10 m/s and 5 m/s, respectively



Based on the above information, answer the following questions :

(i) Find the distance travelled by boat A to reach point D in the river, vertically below the point P. (Use  $\sqrt{3} = 1.73$ ) 1

(ii) What is the width of the river ? 1

(iii) (a) Which boat will reach point D first, and how much earlier, than the other boat ? 2

**OR**

(b) What is the distance between the two boats after 3 seconds ? 2

**Solution:**

(i)  $\frac{20}{AD} = \tan 30^\circ$   $\frac{1}{2}$

$AD = 20\sqrt{3} = 34.6$  m  $\frac{1}{2}$

(ii)  $\frac{20}{DB} = \tan 45^\circ \Rightarrow DB = 20$  m  $\frac{1}{2}$

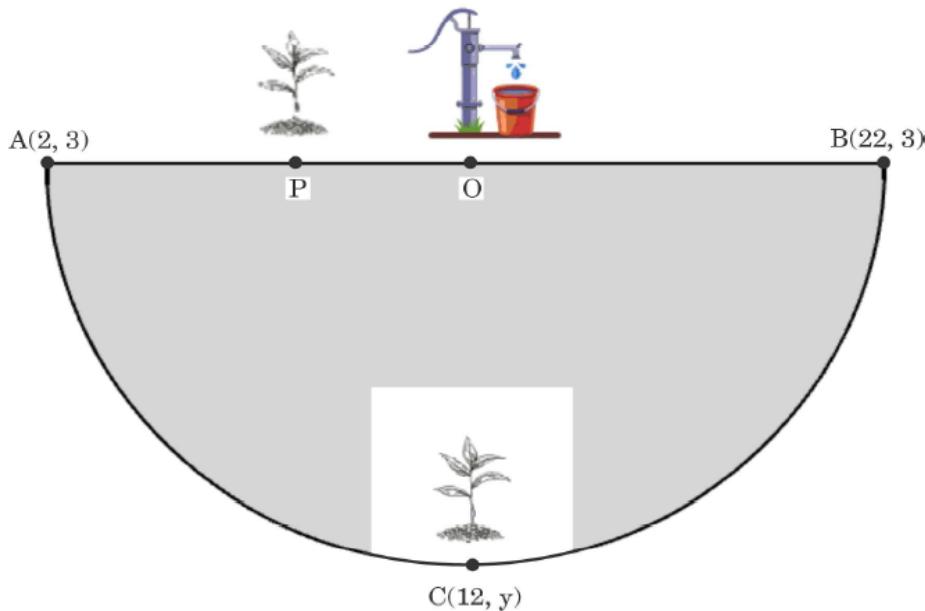
Width of river =  $34.6 + 20 = 54.6$  m  $\frac{1}{2}$

(iii) (a) Time taken by boat A =  $\frac{34.6}{10} = 3.46$  seconds  $\frac{1}{2}$

Time taken by boat B =  $\frac{20}{5} = 4$  seconds  $\frac{1}{2}$

Boat A will reach earlier by 0.54 seconds  $\frac{1}{2}$

**OR**


(iii) (b) Distance covered by boat A in 3 seconds =  $3 \times 10 = 30$  m  $\frac{1}{2}$

Distance covered by boat B in 3 seconds =  $3 \times 5 = 15$  m  $\frac{1}{2}$

Distance between them after 3 seconds =  $54.6 - (30+15)$   
 $= 9.6$  m 1

### Case Study – 2

37. There is a semicircular park in Aman's society. He wishes to plant saplings along the boundary of the park. There is a borewell at the centre O of the park along the diameter AB as shown in the figure below.



Based on the above information, answer the following questions :

- (i) Find the coordinates of point O. 1
- (ii) Find the radius of the semicircular park. 1
- (iii) (a) One sapling is kept at point C(12, y). Find the coordinates of C. 2

**OR**

- (b) One sapling is kept at point P along AB so that  $PA = \frac{1}{3} PB$ .

Find the coordinates of P. 2

|                  |                                                                                                                                                                         |                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| <b>Solution:</b> | (i) Coordinates of O are (12, 3)                                                                                                                                        | 1                                   |
|                  | (ii) Radius = 10                                                                                                                                                        | 1                                   |
|                  | (iii) (a) $OC = \text{radius} = 10$<br>$y = 13, y = -7$<br>Coordinates of the point 'C' are (12, 13) or (12, -7)                                                        | $\frac{1}{2}$<br>1<br>$\frac{1}{2}$ |
|                  | <b>OR</b>                                                                                                                                                               |                                     |
|                  | (iii) (b) P divides AB in the ratio 1 : 3<br>Coordinates of P are $\left( \frac{1 \times 22 + 3 \times 2}{4}, \frac{1 \times 3 + 3 \times 3}{4} \right)$<br>i.e. (7, 3) | $\frac{1}{2}$<br>1<br>$\frac{1}{2}$ |

### Case Study - 3

38. In a society, a yoga instructor was hired to train the people of the society to live a healthy lifestyle. Yoga sessions were held daily from 5 p.m. to 7 p.m. in the society park. On day one, 5 people joined the yoga session, on day two, 3 more people joined, on day three, another 3 people joined and in this manner every next day, 3 more people kept on joining.



Based on the given information, answer the following questions :

(i) On which day did 59 people join the yoga session ? 1  
 (ii) How many people joined the yoga session on the 31<sup>st</sup> day ? 1  
 (iii) (a) The yoga instructor was paid ₹100 for each person attending the yoga session. On which day would he earn ₹5,000 ? 2

**OR**

(b) What was the total amount earned by the yoga instructor in 16 days ? 2

**Solution:**

(i)  $5 + (n - 1) 3 = 59$  1  
 $n = 19$

(ii)  $a_{31} = 95$  1

(iii) (a) Number of persons  $= \frac{5000}{100} = 50$  1  
 $5 + (n - 1) 3 = 50$  1  
 $n = 16$

**OR**

(iii) (b)  $S_{16} = \frac{16}{2} [ 10 + 15 (3) ]$  1  
 $= 440$  1/2

Total amount earned in 16 days  $= 440 \times 100$   
 $= ₹ 44000$  1/2